Skip to main content
Log in

Oncostatin M regulates mesenchymal cell differentiation and enhances hematopoietic supportive activity of bone marrow stromal cell lines

  • Cytokines/Growth Factors/Adhesion Factors
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Bone marrow stromal cell lines (TBR cell lines) established from temperature-sensitive Simian Virus 40 T-antigen gene transgenic mice exhibited myogenic, osteogenic, and adipogenic differentiation. The effect of oncostatin M (OSM) on such mesenchymal cell differentiation of marrow stromal cell lines was examined. One of those stromal cell lines, TBRB, differentiated into skeletal muscle, and its differentiation was stimulated by OSM, whereas differentiation of TBR10-1 into smooth muscle was inhibited by OSM. TRB31-2 is a bipotent progenitor for adipocytes and osteoblasts, and OSM stimulated osteogenic differentiation while inhibiting adipogenic differentiation. On the other hand, TBR cell lines exhibited various potentials for supporting hematopoiesis in culture. When hematopoietic progenitor cells were cocultured with OSM-stimulated stromal cell lines, TBR10-1 and TBR31-2 exhibited enhanced hematopoietic supportive activity. As responsible molecules for stromal cell dependent hematopoiesis, expression of stem cell factor (SCF) (a ligand of c-Kit), vascular cell adhesion molecule (VCAM-1) (a ligand of VLA-4), and secretion of interleukin (IL)-6 were increased by OSM. OSM affected mesenchymal cell differentiation and promoted the hematopoietic supportive activity of marrow stromal cell lines. As OSM production is induced by cytokines from hematopoietic cells, OSM may be a key factor in mutual regulation between hematopoietic cells and stromal cells in the bone marrow. OSM may play a role as a regulator in maintaining the hematopoietic microenvironment in marrow by coordinating mesenchymal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown, T. J.; Lioubin, M. N.; Marquardt, H. Purification and characterization of cytostatic lymphokines pruduced by activated human T lymphocytes. J. Immunol. 139:2977–2983; 1987.

    PubMed  CAS  Google Scholar 

  • Brown, T. J.; Liu, J.; Brashem-Stein, C.; Shoyab, M. Regulation of G-CSF and GM-CSF expression by oncostatin M. Blood 82:33–37; 1993.

    PubMed  CAS  Google Scholar 

  • Brown, T. J.; Rowe, J. M.; Lui J.; Shoyab, M. Regulation of interleukin-6 expression by oncostatin M. J. Immunol. 147:2175–2180; 1991.

    PubMed  CAS  Google Scholar 

  • Bruce, A. G.; Hoggatt, I. H.; Rose, T. M. Oncostatin M is a differentiation factor for myeloid leukemia cell. J. Immunol. 149:1271–1275; 1992.

    PubMed  CAS  Google Scholar 

  • Caplan, A. I. The mesengenic process. Clinics Plastic Surg. 21:429–435; 1994.

    CAS  Google Scholar 

  • Charbord, P.; Lerat, H.; Newton, I.; Tamayo, E.; Gown, A. M.; Herve, P. The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Exp. Hematol. 18:276–282; 1990.

    PubMed  CAS  Google Scholar 

  • Dennis, J. E.; Caplan, A. I. Analysis of the developmental potential of conditionally immortal marrow-derived mesenchymal progenitor cells isolated from the H-2Kb-tsA58 transgenic mouse. Connect Tissue Res. 35:93–99; 1996.

    PubMed  CAS  Google Scholar 

  • Escary, J. L.; Perreau, J.; Dumenil D.; Ezine, S.; Brulet, P. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 27:361–364; 1993.

    Article  Google Scholar 

  • Ferrari, G.; Cusella-De Angelis, G.; Coletta, M.; Paolucci, E.; Stornaiuolo, A.; Cossu, G.; Mavilio, F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein, A. J.; Gorskaja, J. F.; Kulagina, N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4:267–274; 1976.

    PubMed  CAS  Google Scholar 

  • Fromigue, O.; Marie, P. J.; Lomri, A. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J. Cell. Biochem. 68:411–426; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Galmiche, M. C.; Koteliansky, V. E.; Briere, J.; Herve, P.; Charbord, P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76; 1993.

    PubMed  CAS  Google Scholar 

  • Gimble, J. M.; Robinson, C. E.; Wu, X.; Kelly, K. A. The function of adipocytes in the bone marrow stroma: an update. Bone 19:421–428; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gimble, J. M.; Wanker, F.; Wang, C. S.; Bass, H.; Wu, X.; Kelly, K.; Yancopoulos, G. D.; Hill, M. R. Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gp130 protein. J. Cell. Biochem. 54:122–133; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis, A. E.; Heersche, J. N. M.; Aubin, J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol. 106:2139–2152; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Grove, R. I.; Eberhardt, C.; Abid, S.; Mazzucco, C.; Liu, J.; Kiener, P.; Todaro, G.; Shoyab, M. Oncostatin M is a mitogen for rabbit vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 90:823–827; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Horn, D.; Fitzpatrick, W. C.; Gompper, P. T., et al. Regulation of cell growth by recombinant oncostatin M. Growth Factors 2:157–165; 1990.

    PubMed  CAS  Google Scholar 

  • Iguchi, A.; Okuyama, R.; Koguma, M.; Obinata, M.; Yanai, N. Selective stimulation of granulopoiesis in vitro by established bone marrow stromal cells. Cell Struct. Funct. 22:357–364; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jay, P. R.; Centrella, M.; Lorenzo, J.; Bruce, A. G.; Horowitz, M. C. Oncostatin-M: a new bone active cytokine that activates osteoblasts and inhibits bone resorption. Endocrinology 137:1151–1158; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H.; Sugimoto, K.; Sawada, H.; Takashita, E.; Tohma, M.; Gonda, H.; Mori, K. J. Mutual education between hematopoietic cells and bone marrow stromal cells through direct cell-to-cell contact: factors that determine the growth of bone marrow stroma-dependent leukemic (HB-1) cells. Blood 92:834–841; 1998.

    PubMed  CAS  Google Scholar 

  • Kameoka, J.; Yanai, N.; Obinata, M. Bone marrow stromal cells selectively stimulate the rapid expansion of lineage-restricted myeloid progenitors. J. Cell. Physiol. 164:55–64; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T.; Sekiguchi, T.; Xu, M.; Ito, Y.; Kamiya, A.; Tsuji, K.; Nakahata, T.; Miyajima, A. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc. Natl. Acad. Sci. USA 96:7265–7270; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Koguma, M.; Matsuda, K.; Okuyama, R.; Yanai, N.; Obinata, M. Selective induction of lymphoid development of the sorted hematopoietic stem cells by a bone marrow stromal cell line in vitro. Exp. Hematol. 26:280–287; 1998.

    PubMed  CAS  Google Scholar 

  • Leary, A. G.; Wong, G. G.; Clark, S. C.; Smith, A. G.; Ogawa, M. Leukemia inhibitory factor differentiation-inhibiting activity/human interleukin for DA cells augments proliferation of human hematopoietic stem cells. Blood 15:1960–1964; 1990.

    Google Scholar 

  • Lorgeot, V.; Rougier, F.; Fixe, P.; Cornu, E.; Praloran, V.; Denizot, Y. Spontaneous and inducible production of leukaemia inhibitory factor by human bone marrow stromal cells. Cytokine 9:754–758; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, M. K.; Thiede, M. A.; Mosca, J. D.; Moorman, M.; Gerson, S. L. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 176:56–66; 1998.

    Article  Google Scholar 

  • Mukouyama, Y.; Hara, T.; Xu, M., et al. In vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonadmesonephros region. Immunity 8:105–114; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ohneda, O.; Yanai, N.; Obinata, M. Combined action of c-Kit and erythropoietin on erythroid progenitor cells. Development 114:245–252; 1992.

    PubMed  CAS  Google Scholar 

  • Okuyama, R.; Koguma, M.; Yanai, N.; Obinata, M. Bone marrow stromal cells induce myeloid and lymphoid development of thesorted hematopoietic stem cells in vitro. Blood 86:2590–2597; 1995b.

    PubMed  CAS  Google Scholar 

  • Okuyama, R.; Yanai, N.; Obinata, M. Differentiation capacity toward mesencymal cell lineages of bone marrow stromal cells established from temperature-sensitive SV40 T-antigen gene transgenic mouse. Exp. Cell Res. 218:424–429; 1995a.

    Article  PubMed  CAS  Google Scholar 

  • Piersma, A. H.; Brockbank, K. G.; Ploemacher, R. E.; van Vliet, E.; Brakel-van Peer, K. M.; Visser, P. J. Characterization of fibroblastic stromal cells from murine bone marrow. Exp. Hematol. 13:237–243; 1985.

    PubMed  CAS  Google Scholar 

  • Pittenger, M. F.; Mackay, A. M.; Beck, S. C., et al. Multilineage potential of adult human mesenchymal cells. Science 284:143–147; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Puleo, D. A. Dependence of mesenchymal cell responses on duration of exposure to bone morphogenic protein-2 in vitro. J. Cell. Physiol. 173:93–101; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Remy-Martin, J. P.; Marandin, A.; Challier, B., et al. Vascular smooth muscle differentiation of murine stroma: a sequential model. Exp. Hematol. 27:1782–1795; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Szilvassy, S. J.; Weller, K. P.; Lin, W., et al. Leukemia inhibitory factor upregulates cytokine expression by a murine stromal cell line enabling the maintenance of highly enriched competitive repopulating stem cells. Blood 87:4618–4628; 1996.

    PubMed  CAS  Google Scholar 

  • Taguchi, Y.; Yamamoto, M.; Yamate, T., et al. Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc. Assoc. Am. Physicians 110:559–574; 1998.

    PubMed  CAS  Google Scholar 

  • Wakitani, S.; Saito, T.; Caplan, A. I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer, C. T.; Herrmann, M. G.; Moss, A. A.; Rasmussen, R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22:130–131; 1997.

    PubMed  CAS  Google Scholar 

  • Yanai, N.; Matsuya, Y.; Obinata, M. Spleen stromal cell lines selectively support erythroid colony formation. Blood 74:2391–2397; 1989.

    PubMed  CAS  Google Scholar 

  • Yanai, N.; Sekine, C.; Yagita, H.; Obinata, M. Roles of integrin very late activation antigen-4 in stroma-dependent erythropoiesis. Blood 83:2844–2850; 1994.

    PubMed  CAS  Google Scholar 

  • Yanai, N.; Shimizu, A.; Koguma, M.; Obinata, M. v-Src interferes with the in vitro erythropoietic stimulatory ability of the spleen stromal cells through repression of VCAM-1 (Vascular cell Adhesion Molecule-1) and SCF (Stem Cell Factor). Exp. Hematol. 24:883–887; 1996.

    PubMed  CAS  Google Scholar 

  • Yoshimura, A.; Ichihara, M.; Kinjyo, I., et al. Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway. EMBO J. 15:1055–1063; 1996.

    PubMed  CAS  Google Scholar 

  • Zhang, X.; Gu, J.; Lu, Z.; Yasukawa, K., et al. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer GP130. J. Exp. Med. 179:1337–1342; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuaki Yanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanai, N., Obinata, M. Oncostatin M regulates mesenchymal cell differentiation and enhances hematopoietic supportive activity of bone marrow stromal cell lines. In Vitro Cell.Dev.Biol.-Animal 37, 698–704 (2001). https://doi.org/10.1290/1071-2690(2001)037<0698:OMRMCD>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0698:OMRMCD>2.0.CO;2

Key words

Navigation